<cite id="d9bzp"></cite>
<cite id="d9bzp"><span id="d9bzp"></span></cite>
<cite id="d9bzp"><video id="d9bzp"></video></cite><var id="d9bzp"></var>
<var id="d9bzp"><video id="d9bzp"><thead id="d9bzp"></thead></video></var>
<menuitem id="d9bzp"><video id="d9bzp"></video></menuitem>
<var id="d9bzp"></var><cite id="d9bzp"><video id="d9bzp"></video></cite>
<cite id="d9bzp"></cite>
<var id="d9bzp"></var>
<var id="d9bzp"></var>
<var id="d9bzp"><video id="d9bzp"><thead id="d9bzp"></thead></video></var>

静止同步串联补偿器的机电暂态特性研究与仿真

时间:2017-10-06 机电毕业论文 我要投稿

  摘要:静止同步串联补偿器(SSSC)是FACTS家族中新兴的串联补偿元件,对其暂态特性的研究有助于使其更好地与继电;ぷ爸眉爸睾险⒌男髋浜希诮樯躍SSC基本原理的基础上,根据加入$SSC后单机无穷大系统的动态方程,利用中的电力系统仿真库搭建了含SSSC的单机无穷大系统,并对其机电暂态特.1生进行了仿真.仿真结果表明系统发生故障后能有效地抑制功率振荡,并且SSSC不同的投入方式所产生的抑制效果不同.在此基础上还总结了区内区外故障时SSSC的投入运行方式,且线路区内故障时SSSC若以旁路运行方式投入则能达到最佳效果.
  关键词:静止同步串联补偿器: 机电暂态特性; 功率振荡;投入方式
  0 引言
  静止同步串联补偿器是串联型的FACTS元件,是基于可关断器件构成的静止型补偿器件。它通过在线路中串联幅值可调,并与线路电流相角差为90。的电压来实现对线路纵向电压的控制。SSSC具有其它元件无可比拟的优点:①可不需任何交流电容器或电抗器在线路内产生或吸收无功功率:
 、谠谕坏缛菪院偷绺行苑段,能产生与线路电流大小无关的可控补偿电压;③对次同步谐振及其它振荡现象具有一定的抑制能力;④接入储能器后,可对线路进行有功功率和无功功率补偿(增大或减少线路功率,甚至可使其反向流动);⑤接入直流电源后,可补偿线路电阻(或电抗),与线路串补度无关地维持X/R的高比值;⑥能快速或几乎瞬时地响应控制指令;⑦适应单相重合闸时的非全相运行状态。综上所述,SSSC具有良好的应用前景,不论是我国电网的发展需要还是电力技术研究的要求,对静止同步串联补偿器进行研究与分析都是很有必要的。
  目前国内外对SSSC的研究主要集中在的控制器和器件模型的搭建上。利用仿真建立了SSSC的模型,利用瞬时有功无功功率理论设计了装置的控制回路,并用无功功率参考值的阶跃变化来评估SSSC的动态特性。提出了阻尼功率振荡的串联FACTS装置(如TCSC、的最优控制规律和安装位置的选择原则。建立了SSSC的三阶动态模型,其注入电压幅值为脉冲宽度角的函数,用一阶惯性环节表示注入电压相角和脉冲宽度角的关系,利用直接反馈线性化方法提高了系统的鲁棒性。与分别利用神经网络控制策略和模糊自整定PI控制方法设计了SSSC潮流控制器,提高了控制器的自适应能力和鲁棒性,加快了潮流调节速度。现有文献尝试利用各种算法和模型来使得SSSC控制器更加精确有效,而在SSSC故障时的运行方式和故障后投入方式方面却缺乏深入研究。
  本文利用电力系统仿真工具搭建单机无穷大系统,对SSSC的机电暂态特性进行了仿真,并且针对故障过程采用了多种投入SSSC的方式,比较了不同投入方式所带来的抑制功率振荡的不同效果,总结了区内区外的旁路策略。对SSSC机电暂态特性的研究有助于使其更安全更有效地应用于电网,对其投入方式、投入时间的研究有助于使其更好地与继电;ぷ爸眉爸睾险⒌男髋浜,具有重要的工程实践意义。
  1 SSSC基本原理

静止同步串联补偿器的机电暂态特性研究与仿真相关推荐
云南快乐十分哪个好_北京pK怎么玩-湖北快3怎么玩 坏家伙们| 广联达| 神雕侠侣古天乐版| 密室大逃脱| 中国vs日本女排| 中国新说唱| 亲爱的热爱的| 国庆放假安排| 菲律宾| 小野辟谣团队解散|