<cite id="d9bzp"></cite>
<cite id="d9bzp"><span id="d9bzp"></span></cite>
<cite id="d9bzp"><video id="d9bzp"></video></cite><var id="d9bzp"></var>
<var id="d9bzp"><video id="d9bzp"><thead id="d9bzp"></thead></video></var>
<menuitem id="d9bzp"><video id="d9bzp"></video></menuitem>
<var id="d9bzp"></var><cite id="d9bzp"><video id="d9bzp"></video></cite>
<cite id="d9bzp"></cite>
<var id="d9bzp"></var>
<var id="d9bzp"></var>
<var id="d9bzp"><video id="d9bzp"><thead id="d9bzp"></thead></video></var>

关于整数的Li表示式的研究

时间:2017-08-11 数学毕业论文 我要投稿

关于整数的Li表示式的研究

摘要

整数的表示方法有很多,有10进制表示形式,带余形式,本论文研究了整数的li表示法,对于这种表示方法进行了初步的研究.在赖以明,赖君利,赖君良的书中提出了整数g 的li表示式,在此前提下我们对整数的li表示式的存在性命题进行了补充并给予了证明,并给出了整数g的li表示式的应用.经过系统地分析,得到了下面结论:设n是正整数,n>1,若非0整数g 是奇数而非素数a1的倍数,c=a1a2a3…an.则g有且只有如下的表示式: g=l1-kc  其中,k为整数,l1∈L1,且l1<c.
关键词: 素数; 整数的Li 表示式; 赖集.


The Research of Integer Li expression

ABSTRACT
 

There are many methods of integer representation , such as the form of decimal bases, the form of  belt-odd .This paper has studied the integer li representation and has conducted the preliminary research regarding this method of representation. In the good book proposed the li expression of  integer g ,under this premise we carry on studying the proposition of the existence of integer li expression and has given the proof, and has produced the application of li expression of integer g. After systematically analyzing ,we obtained the conclusion: Supposes n is the positive integer, n>1. If not zero integer g is the odd number but the non- a1 multiple, c=a1a2a3… an. then g only has the following expression: g=l1-kc, k is the integer, l1∈ L1, also l1<c
key words: Prime number;  Integer Li expression;  LaiJi.

关于整数的Li表示式的研究相关推荐
云南快乐十分哪个好_北京pK怎么玩-湖北快3怎么玩 陈明忠病危| 42岁何琳罕见晒照| 黑金| 大约在冬季定档| 吴磊| 雪莉住宅调查结束| 罗永浩向老同事道歉| 死神来了2| 雪莉住宅调查结束| 粮食安全白皮书|