<cite id="d9bzp"></cite>
<cite id="d9bzp"><span id="d9bzp"></span></cite>
<cite id="d9bzp"><video id="d9bzp"></video></cite><var id="d9bzp"></var>
<var id="d9bzp"><video id="d9bzp"><thead id="d9bzp"></thead></video></var>
<menuitem id="d9bzp"><video id="d9bzp"></video></menuitem>
<var id="d9bzp"></var><cite id="d9bzp"><video id="d9bzp"></video></cite>
<cite id="d9bzp"></cite>
<var id="d9bzp"></var>
<var id="d9bzp"></var>
<var id="d9bzp"><video id="d9bzp"><thead id="d9bzp"></thead></video></var>

Riemann积分与Lebesgue积分

时间:2017-08-11 数学毕业论文 我要投稿

Riemann积分与Lebesgue积分
 
摘  要:本文比较了Riemann积分和Lebesgue积分的定义、基本性质;给出了Lebesgue积分不同建立方式的等级性证明.我们讨论了有限区间和无穷区间上Riemann可积和Lebesgue可积的关系;最后我们将 中有限区间上Riemann可积和Lebesgue可积的结果推广到了高维的欧氏空间中的有界区域.
关键词:R积分;L积分;R可积;L可积;广义R积分.

Riemann integral and Lebesgue integral
 

Abstract:In this paper , we discuss Riemann integral and Lebesgue integral mainly . we compare some  foundamental properties and definitions of these two integrals ; we give a proof of equivalence of three different  definitions of  Lebesgue  integral .  Also, we discuss the  relation between “Riemann  integrable” and “Lebesgue  integrable” on finite and infinite intervals . Finally , we  give  a  proof  showing  that the famous result which says that Riemann  interable can lead  to the Lebesgue integrable in   also holds in finite domains in multi-dimensional space  ( ).
Key words:Riemann integral;  Lebesgue integral;  Riemann integrable;  Lebesgue interable; generalized Riemann integral.

Riemann积分与Lebesgue积分相关推荐
云南快乐十分哪个好_北京pK怎么玩-湖北快3怎么玩 我说的都是真的| 黑金| 百度地图| 陈明忠病危| 惊魂绣花鞋| 逆转裁判| 千图网| 百度地图| 42岁何琳罕见晒照| 巴黎烟云|