<cite id="d9bzp"></cite>
<cite id="d9bzp"><span id="d9bzp"></span></cite>
<cite id="d9bzp"><video id="d9bzp"></video></cite><var id="d9bzp"></var>
<var id="d9bzp"><video id="d9bzp"><thead id="d9bzp"></thead></video></var>
<menuitem id="d9bzp"><video id="d9bzp"></video></menuitem>
<var id="d9bzp"></var><cite id="d9bzp"><video id="d9bzp"></video></cite>
<cite id="d9bzp"></cite>
<var id="d9bzp"></var>
<var id="d9bzp"></var>
<var id="d9bzp"><video id="d9bzp"><thead id="d9bzp"></thead></video></var>

谈“笔算式的口算”

时间:2017-08-30 数学毕业论文 我要投稿
毕业论文

谈“笔算式的口算”

-----转载

近日,在1本期刊上,看到1位老师撰文讲述了自己在教学口算时,学生出现“笔算式的口算”方法,即用笔算思路来做口算题。作者发现,学生很认可这种“笔算式的口算”方法,分析原因有2:1是家长用这种方法提前教学,使学生早已对此印象深刻;2是笔算的经常练习对学生产生强烈的刺激,学生自然而然地将此方法由笔算迁移到了口算。作者同时感到困惑,学生喜欢的“笔算式的口算”方法,到底于学生学习口算是有利还是有弊呢?

这位老师谈到的现象和产生的困惑,实际上很多低段数学教师都有同感,并且,现实中,老师们都是带着这样的疑虑在实施口算教学,学生们也大多是用着这样的方法在进行口算。但是,笔者以为,这种“笔算式的口算”方法是有违口算本质的,为此,笔者想借此说1说口算的相关知识,愿能够和老师们探讨,使大家更全面地认识口算,合理地开展口算教学。

口算,就是“边心算边口说地运算”,它是不能再借助其它工具(笔、纸),只凭思维和语言进行计算并得出结果的1种计算方法。正因为要口头说出结果,就造成了它与笔算有很大的区别。我们知道,笔算具有1定的竖式规则和固定的运算程序,计算者在掌握基本的程序(计算方法)之后,只要按部就班地操作这个程序即可。比如计算56-18,如果用笔算,只要数位对齐,从低位减起即可。学生们常?谥心钅钣写实卣庋担合扔6减8,不够减,向10位借1,16减8等于8写8;10位上的5借掉了1,还剩4,4减1等于3写3;合起来就是38。学生边说边写,最后算出答案。我们不难发现,在这样的过程中,学生只不过是在呆板、机械地执行竖式减法计算的程序,内部的心智活动很少,思维得到的训练不多。这样的过程,更多的是培养学生操作程序的能力和认真细致的学习习惯。

反观口算,因为口算要口头报出结果,而且口算往往运用于1些急需答案的场合,所以口算首先对速度有较高的要求,这就需要计算者做口算时要采取灵活的方法,在头脑中快速地盘算以得出结果。如同样是算56-18,计算者就有可能采用56-10-8、56-8-10、56-16-2和58-18-2等方法。相比笔算固定的程序,口算时可以采用多样的方法,这首先就说明了口算对于培养人思维的灵活性具有重要意义。其次,我们分析以上任1种口算方法,就还会发现更有意义的东西。比如采用56-10-8的方法,计算者就需要在头脑中经过这么1个过程:先将18拆成10和8,因为56减10,减数是整10数,算起来比较简单,得到46(此时学生要将46储存在头脑中);56减了10以后,少减了8,所以还要再减8(此时既要考虑到少减,还要能够将储存的46调出来再去减);46减8是两位数减1位数,计算相对简单。至此,计算尚未结束,因为口头表达结果的时候应该是从高位往低位逐个数字说出来的(因此以前也有口算要从高位算起的要求),这就还要求计算者在头脑中对答案的位值有清晰地认识,这样才能够口头表述正确。所以,等计算者报出“等于3108”时,这才算最后完成了56-18的口算。很明显,这样的思考过程相比前面按程序笔算的方法,心智活动要复杂得多。在这个过程中,计算者要将计算分割成很多的小过程,要将各种信息在头脑中进行合理地拆分、拼组等,并要在短时间内完成所有步骤,得出正确结果,这是1种很高级的心理活动。而计算者正是通过这样的心理活动,锻炼了自己的思维,发展了注意力、记忆力(瞬间记忆力)和创造思维能力。

这就是口算的价值之所在,这也正是教材要安排口算教学内容的本意。也只有明确这点,我们才可以去理解:口算就是心算,心算不是作为笔算的台阶,而是1种不同的训练,是课程中独立的部分(数学新课程标准解读,刘兼、孙晓天著)。

明确了口算的价值,我们再来谈“笔算式的口算”方法,就很容易达成共识了。我们可以清楚地认识到,“笔算式的口算”方法,就是用笔算思路来做口算题,那么,即使把它视作是口算的1种方法,但充其量也不过是多种口算方法中1种相对呆板的、程序式的方法。学生用这种方法做口算,虽也能得到正确结果,丢掉的却是更有价值的思维锻炼过程,而长期使用这种方法做口算,那对于他们心智技能的发展和其它综合能力的培养更是影响甚大。

因此,关于“笔算式的口算”方法,家长不知道其中利害,教给孩子这样做,我觉得还是情有可原的。但是,作为专业人员的教师,倘若也1直这样去教,或放任孩子用这样的方法去算,那实际上就是在做1件有违口算本意的事,应该是不妥当的!

当然,那位老师文中提到,因为“笔算的经常练习对学生产生刺激”,使得学生自然而然地将笔算方法迁移到了口算。这是事实,这也是当前口算、笔算教学中需要正确认识和对待的1个问题。

应该说,口算、笔算关系的正确认识及其编排体系的确立是长期摸索和实践的结果。据资料反映,建国以来,我国的小学教材曾经有过口算要求偏高、口算笔算局部脱离等现象。比如根据1952年颁布的《小学算术教学大纲(草案)》编制的教材中,就有100以内的加减法只教口算,不教笔算的安排。但是,经过不断地探索,我们逐渐认识到,把口算的内容放在笔算之前教学,不仅可以用来说明笔算的算理,并且也是帮助学生理解笔算算理、促进笔算能力提高的必要途径,这就有了“口算是笔算的基础”之说。这样的做法,逐渐为人们所认同,也成为了当前《义务教育课程标准》教材编排口算笔算的基本原则。

例如,课标教材中,在1年级下册,设置了口算整10数加减整10数、两位数加减1位数和整10数,而在2年级上册设置了笔算两位数加减两位数,其目的,就是考虑到,要解决笔算两位数加减两位数竖式计算中如何对位的难题,就必须得从之前学习的相关口算知识出发,才能说明竖式计算中为什么要数位对齐、为什么要从个位加起等道理。

又如,教材在编排教学笔算42÷2的内容之前,先学习的是口算除法,因为这样,就能通过复习口算除法的思考过程,来让学生找到笔算除法与口算除法之间的联系,从而理解笔算除法的思路,掌握笔算除法的计算方法。

从上述情况看,那位老师文中所谈到的学生将笔算方法迁移至口算的情况,似乎是不应该出现的。那么,客观存在的“笔算式的口算”方法,究竟又是如何产生的呢?笔者陋见,原因有3。

其1,教材编排体系造成的。现行教材编排口算、笔算时,除了遵循把口算的内容放在笔算之前教学这1基本原则之外,还有1个做法,那就是把1些较难的但又不是最基本的口算,放在笔算之后教学。例如,口算两位数加、减两位数,学生掌握要困难些,所以在2年级上册先教笔算,等到了2年级下册,再进1步要求会口算。教材希望通过这样的措施,能够化解难点,通过对笔算使学生既能学好笔算,又能形成较强的口算能力。应该说,这是1种科学合理的做法。但是,这样1来,问题也是显见的。我们不难想象,学生在学习了两位数加减两位数的笔算方法后,数位对齐、从低位算起的笔算思路,经过反复的练习,已经深入心中,形成了1个牢固的概念。而过了半年,学习口算两位数加、减两位数时,却要将这个思维的定势从脑中移除,换上另外1些方法(如不1定从低位算起),那当然是困难的事情。所以,这就直接导致了学生在口算时自然而然地用上“笔算式的口算”方法。这样的编排模式,在小学高段1些的计算中更多见。像小数的乘除法、分数的加减法等等,都是在学习了笔算之后要求会做1些口算题的。因此,做这些口算题,学生往往也都是用“笔算式的口算”方法的。像这种教材自身编排体系带来的影响,是造成“笔算式的口算”方法存在的原因之1。

1 2下1页

谈“笔算式的口算”相关推荐
云南快乐十分哪个好_北京pK怎么玩-湖北快3怎么玩 产妇丈夫讲述遭遇| 中国联通被约谈| 4000年前文字食谱| 小唐尼回归钢铁侠| papi酱怀孕| 全市无新增鼠疫| 巨型辣条蛋糕| 4000年前文字食谱| 天气预报冷到发紫| 安东尼加盟开拓者|